A Machine Learning Approach to the Forecast Combination Puzzle

نویسندگان

  • Antoine Mandel
  • Amir Sania
چکیده

Forecast combination algorithms provide a robust solution to noisy data and shifting process dynamics. However in practice, sophisticated combination methods often fail to consistently outperform the simple mean combination. This “forecast combination puzzle” limits the adoption of alternative combination approaches and forecasting algorithms by policy-makers. Through an adaptive machine learning algorithm designed for streaming data, this paper proposes a novel time-varying forecast combination approach that retains distribution-free guarantees in performance while automatically adapting combinations according to the performance of any selected combination approach or forecaster. In particular, the proposed algorithm offers policy-makers the ability to compute the worst-case loss with respect to the mean combination ex-ante, while also guaranteeing that the combination performance is never worse than this explicit guarantee. Theoretical bounds are reported with respect to the relative mean squared forecast error. Out-of-sample empirical performance is evaluated on the [56] seven-country dataset and the ECB Survey of Professional Forecasters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Market Volatility Puzzle with Regard to the Systematic Risk of Bubble in the Securities Market of Iran

Stock market volatility is evaluated by measuring the variance of the market that is evaluated through consumption growth volatility in the framework of pricing of CCAPM models. This theory is not consistent with revealed facts, in reality; because consumption growth is very smooth but stock market appears highly volatile; this is famous to stock market volatility puzzle. In this regard, the ne...

متن کامل

Comparison of Lecture and Puzzle for Teaching Medical Emergency to Anesthesiology Students: Students’ Learning and Viewpoints

Introduction: Emphasis on active learning in training leads to the development of new educational strategies for teaching theoretical and clinical courses in medical sciences. Active involvement in the teaching-learning process improves learning. The purpose of the present study is to compare two methods of lecturing and puzzle in Medical Emergency Course, regarding students’ learning & viewpoi...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017